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T he cloud radio access network (C-RAN) constitutes a 
promising architecture for next-generation sys-
tems. Beneficial centralized signal processing tech-
niques can be realized under the C-RAN framework. 

Furthermore, given the recent rapid development of cloud 
computing, this architecture is an ideal platform for sup-
porting network function virtualization (NFV), software-
defined networking (SDN), and artificial intelligence (AI). 

However, most of the existing contributions in C-RAN 
are mainly focused on the physical-layer issues. The 
next-generation networks are expected to support chal-
lenging wireless applications that have diverse delay 
requirements, such as ultrareliable and low-latency 
communications (URLLC). Hence, we invoke the effec-
tive capacity (EC) theory for statistical delay-bounded 
quality of service (QoS) provision in C-RAN architec-
tures, where the delay is taken into account. Based on 
the system model we propose, we conceive sophisticat-
ed power allocation schemes for maximizing the EC of 
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both single-user and multiuser sce-
narios. Our simulation results show 
that a low delay-outage probability 
can be guaranteed by appropriately 
choosing the delay exponent. Fur-
thermore, the results demonstrate 
that the proposed algorithm signifi-
cantly outperforms the existing al-
gorithms in terms of the achievable 
EC. Finally, we highlight some open 
research challenges.

A Quest for Low Latency
Fifth-generation (5G) cellular net-
works, because of the substantially 
increased data volumes they allow, 
are expected to significantly exceed 
the data throughput of fourth-gen-
eration systems [1]. Massive multi-
ple-input, multiple-output (mMIMO) 
systems constitute a promising 
technique for achieving this ambi-
tious goal by exploiting the high 
degrees of spatial freedom [2] and have attracted sub-
stantial research attention. However, in centralized de -
ployments, the performance of mMIMO systems tends to 
be limited by the correlated fading of antennas. This 
issue can be dealt with by deploying a large number of 
geographically distributed antennas for the sake of main-
taining the systems’ benefits. Furthermore, both the link 
quality and cell coverage are dramatically improved by 
this distributed architecture, since the average access 
distance of each user is significantly reduced. This is the 
C-RAN concept [3], which offers a promising network 
architecture capable of achieving the ambitious next-
generation goals.

However, most of the existing literature devoted to 
the C-RAN concept is focused on physical layer issues, 
and the system performance evaluation is mainly based 
on the concept of classic Shannon capacity. Although 
this information-theoretic framework is eminently suit-
able for analyzing the single-user link efficiency, it does 
not recognize the delay from the data-link layer. One of 
the most challenging 5G operational models is URLLC 
[4], conceived for supporting tactile Internet applica-
tions [5], vehicle-to-vehicle communications [6], remote 
control of industrial manufacturing, and so forth. These 
applications have stringent end-to-end delay require-
ments (approximately 1 ms). Additionally, some popular 
multimedia services, such as seamless lip-synchronized 
video conferencing and interactive gaming, also impose 
stringent delay requirements. Hence, research attention 
also has to be dedicated to the data-link layer by consid-
ering these delay requirements. It is of paramount im-
portance to account for the QoS requirements quantified 

in terms of delay when designing next-generation trans-
mission schemes.

Because of the highly time-varying wireless channel 
conditions, it is a considerable challenge to guarantee 
deterministic delay-bounded QoS requirements for these 
important applications. Fortunately, the statistical delay-
bounded QoS theory has proven to be a powerful tool for 
handling the delay requirements of near-real-time traf-
fic. More specifically, we can control the data rate of the 
incoming stream to ensure that the delay-outage prob-
ability is always below a certain threshold. For example, 
in the long-term evolution (LTE) advanced standard, the 
probability that the delay in online gaming is higher than 
50 ms should be kept below 2% [7]. To facilitate the analy-
sis of statistical delay QoS performance, Wu et al. intro-
duced the important notion of EC, which represents the 
maximum constant packet arrival rate that can be sup-
ported by the system while satisfying a maximum delay-
outage probability constraint. 

C-RAN Architecture
The C-RAN architecture is shown in Figure 1 and com-
posed of three parts:

■■ remote radio heads (RRHs) randomly located over the 
coverage area

■■ a baseband unit (BBU) pool, with a powerful cloud 
computing capability in a data center

■■ high-speed, low-latency fronthaul links that connect 
the RRHs to the central processing unit.

The main feature of C-RANs is that the signal processing 
tasks of each small-cell base station (BS) are migrated to 
the BBU pool, which is responsible for all of the baseband 
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Figure 1 an illustration of a 5g c-ran architecture.
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signal processing, such as coordinated multipoint (CoMP) 
transmission, centralized resource allocation, joint user 
scheduling, and data-flow control. The conventional full-
functionality small BSs are replaced by low-cost RRHs, 
which are used only for low-complexity transmission and 
reception. Because of its low-complexity functionality, the 
RRH is smaller than a conventional small-cell BS and can 
be readily installed on lampposts and building walls, hence 
imposing a low maintenance cost. In Figure 1, we can see 
that C-RANs are expected to support diverse applications, 
such as augmented reality-based teleconferencing, drone-
based parcel delivery [8], tactile Internet, vehicular com-
munication, and smart factory support.

Apart from the benefits of the air interface layer, this 
network architecture also enjoys further benefits at 
the network level. For example, compelling techniques, 
such as NFV, SDN, and AI, can be realized in this central-
ized architecture.

■■ NFV: Through NFV, some network functions are sepa-
rated from the conventional hardware infrastructure 
and can run on the cloud-computing infrastructure in 
the BBU pool, with all the high-complexity, power-
thirsty signal processing tasks executed there. The 
main benefit of NFV is that sophisticated network 
functionalities can be dynamically supported, de -
pending on the near-instantaneous network state [1]. 
Additionally, new services can be created for dis-
cerning customers. More details about NFV can be 
found in [9].

■■ SDN: The SDN philosophy is at the heart of intelligent 
programmable networks. The key feature of SDN is 
that the control and data planes are decoupled, so the 
network becomes more flexible in terms of supporting 
intelligent future applications. The key merit of this 
technology is the partitioning of network functional-
ities onto separate software platforms, configuring the 
services by sophisticated programmable controllers. 
This technology is more amenable to employment in 
C-RANs, since the BBU pool is responsible for the whole 
suite of networking services. Its computing resources 
can be adaptively assigned and controlled through pro-
grammable controllers in the BBU pool.

■■ AI: Usercentric clustering and proactive caching consti-
tute a pair of key enabling techniques in C-RANs, which 
can be supported by machine learning. For usercentric 
clustering, each user is cooperatively served by several 
of its nearby RRHs, which may eliminate cell-edge inter-
ference, provided that the near-instantaneous network 
conditions are known. However, this method may be 

unable to meet 5G’s stringent delay requirement, 
because excessive time is required to estimate the prev-
alent network state and to calculate the corresponding 
optimal cluster set for each user. 

This issue can be mitigated by using AI techniques 
[10]. Specifically, the BBU pool can store the users’ his-
torical data, such as their locations, the requested ser-
vice, mobility pattern and speed, service demand profiles, 
and channel characteristics. By using machine-learning 
techniques, these data can be analyzed and beneficial-
ly exploited. Then one can predict a user’s future loca-
tions, service request, and even channel information. 
Hence, the future cluster of each user can be deter-
mined in advance, leading to low-latency predictive 
clustering algorithms. In C-RANs, the BBU pool is 
responsible for supporting the entire network. Hence, 
the AI-aided C-RAN is capable of forming globally opti-
mal usercentric clusters. By contrast, the conventional 
cellular network is capable only of providing locally 
optimal solutions, since its operation is based on 
local information. 

Another promising technique in C-RANs is content 
caching. By caching the popular contents at the RRHs, 
the contents requested by the users can be directly 
transmitted from the nearby RRHs to the users, rather 
than fetching it from the core network. The access 
latency of the contents can thus be significantly re -
duced, alleviating the fronthaul traffic that constitutes 
C-RANs’ bottleneck. The key question in cache-aided 
C-RANs is deciding which contents file should be 
cached in which RRH. This large-scale matching prob-
lem can also be solved by using AI techniques. For 
example, by analyzing users’ history of requesting files 
from the BBU pool, machine learning is capable of cal-
culating the file popularity in support of this content 
placement problem.

Hence, the C-RAN architecture is an ideal platform for 
supporting the above low-delay techniques. In the follow-
ing section, we introduce the EC theory for statistical 
delay-bounded QoS provision over C-RANs.

The Theory of the Statistical Delay-Bounded QoS
The C-RAN delay-bounded architecture is shown in Fig-
ure 2. Each user’s data stream is entered into its first-in-
first-out (FIFO) buffer at a constant arrival rate of kn  b/s. 
At the data-link layer, the upper-layer packets are parti-
tioned into transmission frames, and then each frame is 
mapped to bitstreams at the physical layer. Then the 
BBU pool calculates the transmission rate required and 
the power to be assigned to each user according to their 
delay requirements and to their channel state informa-
tion (CSI) received via the feedback channel. Finally, the 
users’ data streams are read out of the FIFO buffer and 
sent to all RRHs for transmission over the wireless chan-
nel at the service rates requested. The RRHs are assumed 

C-rANs Are expeCted to support diverse 
AppliCAtioNs, suCh As AugmeNted reAlity-
bAsed teleCoNFereNCiNg.
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to be equipped with a single antenna. We consider a 
block-fading channel, whose complex channel envelope 
is fixed during each transmission frame, and it is inde-
pendently faded over different time frames.

We first introduce the important notion of the delay 
exponent i  that establishes the relationship between 
the maximum queue length and the buffer overflow prob-
ability, assuming that different users have different delay 
requirements, characterized by , , , .k K1k fi =  For the 
C-RAN architecture of Figure 2, the buffer overflow prob-
ability of the kth user is approximated by ,e Q ,k kthi  where ki  
and Q ,kth  are the delay exponent and the maximum buffer 
length of user ,k  respectively. Hence, the delay exponent 

ki  reflects the decay rate of the buffer overflow probabil-
ity. A higher ki  corresponds to a faster overflow decay 
rate, which implies that the system is capable of meeting a 
more stringent delay requirement for user .k  By contrast, 
a lower ki  leads to a slower buffer overflow decay rate, 
which represents a looser delay requirement for user .k  

In the extreme case of ,k " 3i  the system cannot tolerate 
any delay, which corresponds to an extremely tight delay 
requirement for user .k  On the other hand, when ,0k "i  
an arbitrarily long delay can be tolerated by user .k

The probability that the delay is longer than a maxi-
mum bound of Dmax  can be approximated [11] as

 ,PrP D eDelay max
D

delay
out max$ . f= in-" ,  (1)

where f  is the probability that the buffer is not empty. In 
general, the delay-violation probability of Pdelay

out  has to be 
extremely low for URLLC services.

EC proposed by Wu et al. [11] is defined as the maxi-
mum constant transmission frame arrival rate that the 
system can support while satisfying a maximum delay-
outage probability constraint. The EC of user k  is ex-
pressed [11] as

 ( ) ( { }),log e1EC Ek
k

Rk ki
i

=- i-  (2)
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Figure 2 the statistical QoS provisioning over the 5g c-ran.
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where E denotes the expectation operator, Rk  is the 
instantaneous data rate of user k  that is given by 

,logR T B p1 , ,k f i k i ki

I
2 1

a= +
=

` j/  with ,Tf  ,B  ,p ,i k  and ,i ka  
denoting the fixed length of each transmitted frame, the 
system bandwidth, the transmit power, and the channel 
gains from RRH i  to user ,k  respectively. For simplicity, the 
multiuser interference is not considered here. If the delay-
bound violation probability is ,Pdelay

out  one should limit the 
incoming data rate to a maximum of ( ) .ECk kn i=

Among the studies on conventional wireless com-
munication systems, most focus mainly on the ergodic 
capacity maximization problem, which ignores the delay 
requirement. By contrast, we aim to design delay-bound-
ed strategies to maximize the sum of the EC of all us-
ers under their particular requirements. Specifically, we 
formulate the sum EC maximization problem under the 
following constraints:

■■ Each RRH has its individual average power constraint.
■■ Each RRH is also subject to a specific peak power 

constraint.
The first constraint is closely related to the long-term 
power budget, while the second is imposed for guaran-
teeing that the instantaneous power remains within the 
linear range of practical power amplifiers.

Single-User Case
We first study the single-user case to glean initial insights. 
Because of the complex expression of the EC, most exist-
ing contributions have focused on the power allocation of 
single-transmitter scenarios, where only a single sum-
power constraint is imposed. The optimal solution to this 
problem can be readily derived, which obeys a water-fill-
ing-like format. By contrast, in a C-RAN, all RRHs are sub-
ject to their individual power constraints since the power 
cannot be shared among the devices. Hence, the conven-
tional optimization method is no longer applicable, and 
the power allocation of each RRH will no longer be deter-
mined by a water-filling solution.

Therefore, we turn to convex optimization theory and 
derive the optimal power allocation in closed form for 
the C-RAN scenario, which depends not only on the chan-
nel conditions but the delay requirements as well. For 
the special case of a single RRH, the power allocation 
lends itself to the conventional water-filling solution. For 
the general case associated with multiple RRHs, the so-
lutions reveal that those with higher channel gains have 
higher priorities to transmit with full power.

We can also find the closed-form solution for the two 
extreme cases, i.e., when the delay exponent i  becomes 

zero and infinity. For the first case, the original optimi-
zation problem reduces to the conventional ergodic ca-
pacity maximization problem, and its power allocation 
solution depends only on the channel conditions. For the 
infinity case, the system cannot tolerate any delay, and 
the optimal power allocation for each RRH reduces to 
the channel inversion associated with a fixed data rate.

Multiuser Case
Because of the powerful computational capability of the 
BBU pool, the C-RAN will serve multiple users. However, 
the expression of EC is much more complex than that of 
the conventional Shannon capacity. The power control 
problem of the multiuser case is much more challenging 
to solve. To simplify the analysis, we assumed that all the 
RRHs transmit orthogonal signals to the different users 
to avoid the multiuser interference. Additionally, we 
ignored the peak power constraints for simplicity. In this 
case, we were able to obtain the optimal power alloca-
tion solution for each user in closed form.

Performance Evaluations
We carried out simulations to evaluate the performance 
of our proposed power allocation scheme for a statistical 
delay-bounded C-RAN architecture deployed within a 
square area of 2 km × 2 km. We adopted the Nakagami-m 
block-fading channel, subsuming the Rayleigh, Rician, 
and additive white Gaussian noise channels. The simula-
tion results are based on the following parameters: 

■■ a time frame of length .T 0 04 msf =

■■ a system bandwidth of B 5MHz=

■■ the average power constraint and peak power con-
straint of each RRH set to .P 0 5 Wavg =  and ,P 1Wpeak =  
respectively

■■ the Nakagami fading parameter set to m 2=  
■■ the path-loss model given by . .PL 148 1 37 6,i k = +  

( )log d dB,i k10  [7], where d ,i k  is the distance between 
the i th RRH and the kth user measured in kilometers

■■ the noise power density set as −174 dBm/Hz.

Single-User Case
We first consider the single-user case, where the user is 
located at the center of our C-RAN network. Let us assume 
that there are two RRHs, with their coordinates randomly 
chosen as [–600, 800] m and [–900, 946] m.

Figure 3 shows the delay-outage probability versus the 
delay exponent i  for our proposed power control algo-
rithm. We tested three different values of the maximum 
delay threshold Dmax , i.e., , , . .D 2 1 0 5and msmax =  The rate 
of incoming data streams is set as ( ) .ECn i=  As illustrat-
ed in Figure 3, the delay-outage probability decreases rap-
idly with the delay exponent i , since a higher i  implies a 
more stringent delay requirement. As expected, a higher 
Dmax  leads to a lower delay-outage probability. When 

,D 1msmax =  the delay-outage probability achieved by our 

We Aim to desigN delAy-bouNded strAtegies 
to mAximize the sum oF the eC oF All users 
uNder their pArtiCulAr requiremeNts.
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proposed algorithm can be as low as . ,3 5 10 12# -  when i  
is chosen as ,10 .1 8i = -  which satisfies URLLC’s stringent 
delay requirement [4], while, for the case of ,D 2msmax =  
the delay-outage probability can reach ,10 15-  when i  is 
set as .10 2i = -  Hence, the delay exponent can be adap-
tively set to satisfy the diverse delay requirements.

Next, we compare our algorithm to the following exist-
ing algorithms in terms of the achievable EC:

■■ Nearest RRH serving algorithm: As the terminology sug-
gests, this algorithm assigns the nearest RRH to serve 
the user. The technique developed in [12] for simple 
point-to-point systems is used for solving the power 
allocation problem. This algorithm is provided to 
show the gains gleaned from cooperative transmission 
in C-RANs.

■■ Constant power allocation algorithm: The transmit 
power of each RRH is set to its average power limit 

.Pavg  This method is used for showing the benefits of 
dynamic power allocation in the face of different chan-
nel conditions.

■■ Independent power allocation algorithm: In this 
approach, each RRH independently optimizes its own 
transmission power based purely on its own channel 
conditions. This method is provided for demonstrating 
the merits of optimizing the power allocation accord-
ing to the joint channel conditions.

■■ Ergodic capacity maximization algorithm: This algo-
rithm maximizes the classic ergodic capacity for the 
user without incorporating the delay requirement.

■■ Channel inversion algorithm: Here, the power allocation of 
each RRH is proportional to the channel inversion. This 
algorithm supports a constant transmission data rate.

Figure 4 shows the normalized EC performance (which 
is the EC divided by B  and )Tf  for the different algo-
rithms versus the delay exponent .i  As illustrated in 
Figure 4, the EC achieved by all of the algorithms 
(except the channel inversion algorithm) decreases 
with the delay exponent .i  Intuitively, a higher i  corre-
sponds to a more stringent delay requirement and a 
lower delay-outage probability requirement. Then, the 
maximum arrival rate that can be supported should be 
reduced for satisfying the stringent delay requirements. 
We observe from this figure that our algorithm has a 
much better performance than the others, especially 
for high delay exponents. 

It is interesting to see that the performance of the 
ergodic capacity maximization algorithm approaches 
that of our proposed algorithm for low delay exponent 

,i  while it performs much worse than ours for a high .i  
This can be explained as follows. When i  is small, the 
delay requirement is loose, and then maximizing the EC 
is approximately equivalent to maximizing the ergodic 
capacity, leading to similar performance for these two 
algorithms. However, for high ,i  the delay requirement 
is very strict, which has to be taken into consideration 
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when designing the transmission strategy, but this is not 
considered by the ergodic capacity maximization algo-
rithm, hence resulting in a much worse performance. 

By using cooperative transmission among two dif-
ferent RRHs, the proposed algorithm provides much 
better performance than the nearest RRH serving al-
gorithm, where only one RRH is applied for transmis-
sion. For example, when ,10 2i = -  the performance gain 
is up to 0.6 b/s/Hz. Since our proposed algorithm aims 
to optimize the power allocation according to the joint 
conditions of channel gains and delay exponents, the 
performance of our proposed algorithm significantly 
outperforms the constant power allocation algorithm, 
where the power is kept fixed all  the time. By optimizing 
the power allocation according to the joint channel con-
ditions, our proposed algorithm achieves much higher 
normalized EC than the independent power allocation 
algorithm. As expected, the channel inversion method 
has the worst performance across a wide range of i  val-
ues, since it aims to provide a constant data rate for vari-
ous channel conditions.

Multiuser Case
Finally, in Figure 5, we consider the multiuser case, 
where there are two users having the coordinates given 
by [ , ]100 0-  and [ , ],0 100  respectively. We assume that 
there are four RRHs located at [ , ],[ , ],650 650 650 650-

[ , ],650 650- -  and [ , ]650 650- . We compare our proposed 
algorithm to the ergodic capacity maximization algo-
rithm in terms of the sum EC performance. We observe a 
performance trend similar to that of the single-user sce-
nario of Figure 4. For example, both algorithms have 
almost the same performance for low delay exponent ,i  
while our proposed algorithm outperforms the ergodic 
capacity maximization for high delay exponent ,i  and 
the performance gain increases with .i

In addition, we compare our proposed algorithm with 
two others, i.e., the nearest RRH serving algorithm and 
the constant power allocation algorithm. For the former, 
each user is served by its nearest RRH, while for the lat-
ter algorithm, the instantaneous transmit power for each 
RRH is set to its average power limit ,Pavg  and each RRH 
assigns equal instantaneous transmit power to each user. 
We see from this figure that our proposed algorithm sig-
nificantly outperforms these two others, achieving a 
performance gain over them of 2.8 b/s/Hz and 1.5 b/s/Hz, 
respectively—and the performance gain remains nearly 
fixed over all of the delay exponent .i  By exploiting the 
multiuser diversity, the normalized EC attained by the 
proposed algorithm for the two-user case is much larger 
than that of the single-user case.

Conclusions 
We first highlighted the C-RAN architecture that consists 
of three components: the BBU pool, fronthaul links, and 
RRHs. The C-RAN architecture can rely on centralized 
signal processing techniques, such as CoMP transmis-
sion, joint user scheduling, and data-flow control. Addi-
tionally, the emerging techniques of NFV, SDN, and AI 
can be intrinsically integrated with the C-RAN architec-
ture. Then we highlighted the EC theory conceived for 
statistical delay-bounded C-RANs where the delay 
requirement was incorporated. Under the cross-layer 
C-RAN model, we proposed power allocation schemes 
for maximizing the sum EC for both the single-user case 
and multiuser case that we considered. The simulation 
results showed that, by appropriately choosing the delay 
exponent ,i  the delay-outage probability can be reduced 
below ,10 9-  which is appealing for URLLC. Furthermore, 
the simulation results obtained also showed that our pro-
posed algorithm significantly outperforms the existing 
algorithms in terms of the achievable EC, especially in 
the case of stringent delay requirements.

However, substantial further research is required on 
delay-bounded C-RAN networks in the following areas:

■■ Interference management: In this article, we considered 
the idealized, interference-free scenario, which typically 
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leads to a convex optimization problem. However, when 
each RRH is equipped with multiple antennas, several 
users can be simultaneously served in the same time 
and frequency slot by adopting powerful beamforming 
techniques, which additionally improves the EC perfor-
mance. This kind of optimization problem becomes 
nonconvex and hard to solve even for the simple Shan-
non capacity expression. The complex expression of 
the EC makes the optimization problem challenging to 
solve, which needs further investigation.

■■ Limited fronthaul capacity: Because of their simple func-
tionalities, RRHs can be densely deployed at low imple-
mentational cost [13]. Traditionally, the fronthaul links 
are usually fixed links, such as optical fibers or high-
speed Ethernet. However, in densely deployed C-RANs, 
laying cables imposes high installation, operational, and 
maintenance costs. Hence, wireless communication 
links, such as millimeter-wave (mm-wave) transmission, 
are promising in this scenario. However, the available 
bandwidth is much lower even at mm-wave frequencies 
than with fixed links. Hence, the limited fronthaul 
capacity should be taken into account when designing 
cross-layer operation.

■■ Other delay sources: This article considered only the 
queueing delay in the BBU pool. However, if the C-RAN is 
expected to cover a large area, then the propagation 
delay of the fronthaul links should also be taken into 
consideration. Furthermore, nonnegligible time is 
required for calculating the power allocation for each 
user. In contrast to the LTE network, where the delays 
can be ignored, in URLLC, the stringent delay require-
ments have to be carefully considered by future re -
search. In this article, we focused only on the delay 
incurred from the data-link layer. However, the delay 
incurred by the upper layer beyond the data-link layer 
should also be taken into account, such as routing and 
the access to a number of virtualized network functions. 
Furthermore, some more-advanced user scheduling 
algorithms with low complexity should also be devel-
oped to satisfy the stringent delay requirements.

■■ Short packet transmission: In this article, we adopted 
Shannon’s capacity for quantifying the instantaneous 
data rate in (2), which is accurate when the block-
length of channel codes is sufficiently large. However, 
in URLLC applications, short packets are preferred. 
Hence, Shannon’s capacity cannot be approached. She 
et al. mentioned this issue in [14] and introduced an 
approximate achievable data-rate expression at a finite 
blocklength, which takes into account the transmis-
sion error probability. However, the resource alloca-
tion optimization problem based on this modified 
capacity expression does not lead to a convex optimi-
zation problem, which needs further investigation.

■■ Energy efficiency issue: This article focuses on the EC 
maximization problem. However, energy efficiency, 

defined as the ratio of the data rate to total power 
consumption [15], is a key performance metric in 5G 
cellular networks. So, energy efficiency-oriented trans-
mission design, considering the delay requirements, 
needs further study.
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